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The Lorentz-augmented orbits concept provides propellantless electromagnetic propulsion without a tether, using
the interaction between an electrostatically charged satellite and the Earth’s magnetic field to provide a useful thrust.
New types of Earth-synchronous orbits are found from equations governing the motion of satellites experiencing the
Lorentz force in orbit. The equations of motion for such a spacecraft are derived based on a simplified magnetic field
model, in which the dipole is aligned with true north. For a polar-orbiting satellite, a constant electrical charge can
create arbitrary changes in the right-ascension angle. This method allows for single-orbit repeat-groundtrack low-
Earth-orbit satellites. Analytical expressions for changes in orbital elements due to Lorentz forces are verified by
numerical simulation for the polar and equatorial cases. In the equatorial case, manipulation of the longitude of
perigee by constant electrostatic charge is possible. Perigee movement also allows for the creation of an Earth-
synchronous type of orbit. The case of a dipole field, for which the north pole is not aligned with true north, is also
examined. Feedback control using only the Lorentz force for actuation is shown to stabilize this general case.

I. Introduction

N A repeat-groundtrack orbit, the subsatellite point traces out a

recurring pattern in some integer number of orbital periods.
Traditionally, these orbits are achieved by adjusting the period of a
satellite such that it completes an integer number of revolutions in
exactly an integer number of sidereal Earth days. Geostationary and
geosynchronous Earth orbits (GEOs) are perhaps the most familiar
and useful examples. These orbits have a mean motion equal to the
spin rate of the Earth. We shall refer to orbits that repeat their
groundtrack every orbital period as GT-1 orbits. Thus, all trajectories
in GEO are in the GT-1 class. A more general class, the GT-x orbit,
repeats its groundtrack every x revolutions. For example, satellites in
the GPS constellation are in 12 sidereal hour orbits and can thus be
considered GT-2 satellites. Many low-Earth-orbit (LEO) imaging
satellites designed for full-Earth coverage also use repeat-track
orbits. Every 16 days, over the course of 233 orbits, Landsat 7 covers
the full Earth, making it a GT-233 satellite [1]. Repeat-groundtrack
Keplerian orbits are based on the number of Earth days that pass
before the ground track is repeated. However, augmenting the orbit
with the Lorentz force enables repeat-groundtrack orbits that are not
tied to integer multiples of the Earth’s spin period.

Dedicated weather satellites and both government and commercial
communications satellites are just a few of the numerous uses for GT-
1 orbits. However, GT-1 systems are currently limited to GEO. The
altitude of these satellites, roughly 36,000 km, requires high-power
communications and impacts the aperture requirements for Earth-
imaging satellites. An ideal arrangement would be a GT-1 orbit at a
low-Earth altitude. This paper proposes just that: a low-Earth polar
GT-1 orbit achieved with propellantless propulsion. Although such
an orbit is not geostationary in the sense of an equatorial GEO
satellite, it is geosynchronous. The groundtrack repeats every orbital
period.

The propellantless propulsion technique proposed here allows one
to realize a so-called Lorentz-augmented orbit (LAO). A spacecraft
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capable of such an orbit behaves as a charged particle subject to
interactions with the Earth’s magnetic field. We begin with a
summary of the elementary electrodynamics involved. The Lorentz
force experienced by a particle of charge ¢ (coulombs) moving
through a magnetic field B is given by

F,=¢qv.,xB (@)
where v, is the particle velocity with respect to the magnetic field.
This force, named after Dutch physicist and Nobel Prize winner
Hendrik Lorentz, accelerates a spacecraft that is already subject to the
force of gravity, augmenting the familiar Keplerian dynamics. An
LAO exploits the interaction between the Earth’s geomagnetic field
and an electrostatic charge built up on a satellite [2]. Thus, an LAO
results from electrodynamic propulsion that does not require a tether.
A tether system normally entails a long conductive wire, through
which a current is forced. The drifting electrons in the tether provide
the moving charged particles necessary for the Lorentz force [3]. In
LAO, the spacecraft itself becomes the moving charged particle,
creating a current along its orbital path.

An LAO is achieved by a spacecraft that uses electrical power to
build up a net electrostatic charge on its body, and this net charge
causes an interaction between the geomagnetic field and the vehicle
in the form of the Lorentz force. The magnitude and direction of the
force are defined by the size and polarity of the charge on the satellite
g, the velocity of the vehicle with respect to the magnetic field v,., and
the strength and direction of the magnetic field B:

F,=q(v—wp;xr)xB ?2)
where the position of the satellite is given by r, and wj represents the
Earth’s angular velocity. In an inertial frame, the geomagnetic field
rotates with the Earth [4]. The relative velocity v, that causes the
Lorentz force results from the difference between the absolute
spacecraft velocity v and the velocity of the magnetic field, wg X r.
The power system of the satellite can then modulate the net charge to
control the propulsive force.

The LAO concept offers propellant-free propulsion. The energy
stored in the Earth’s rotation is used to do work on the vehicle. The
size of the force is limited only by the charge-holding capacity (i.e.,
its self-capacitance) and available power of the satellite. However,
the direction of thrust is fixed with respect to the velocity direction of
the spacecraft and the direction of the magnetic field. This limitation
is not so restrictive as to render the system useless, though. With
appropriate planning and orbit design, many useful applications of an
LAO can be realized. Described in Sec. IV are methods for changing
orbital energy, changing the orbit’s angular momentum (both
magnitude and direction), and arbitrary control of right ascension and
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argument of perigee for certain situations. This control allows for the
creation of certain new Earth-synchronous orbits.

II. Related Work and Concept Overview

The LAO builds on previous research in many fields. Some of this
work is presented here. It offers insight into some of the design and
implementation issues of LAO-capable spacecraft and guides our
development of a candidate space-system architecture.

A. Related Work

The contribution of the Lorentz force to orbiting bodies has been
observed in natural planetary systems. Schaffer and Burns [5,6] have
analyzed the dynamics of dust particles charged by the plasma
environment around Jupiter. They have shown that the motions of
these small charged grains can be greatly affected by Lorentz
mechanics. This mechanism can be used to explain sparse,
latitudinally thick, rings found around Jupiter’s main rings. Hamilton
derives expressions for time-averaged perturbation equations of dust
particles around Saturn [7], some of which are also derived here.
Although the fundamental dynamics of these particles is well
understood, we seek applications for controlled-charge spacecraft in
a variety of orbits.

Just as dust grains naturally achieve some nonzero charge around
Jupiter, a satellite orbiting in a plasma environment will attain a static
charge. Many Earth-orbiting spacecraft, such as the SCATHA
mission, have measured this effect [8]. Garrett and Whittlesey [9]
present an overview of the natural charging that occurs in the Earth
environment. Spacecraft in Earth orbit tend to naturally hold a
negative charge, and this charging occurs with a small time constant
(on the order of milliseconds) [10].

If a satellite is to control its charge, it must exchange charge with
the plasma environment in some way. One solution involves the use
of ion or electron beams. Charging a spacecraft with particle beams
has been extensively studied in conjunction with research in both
missile defense and ionospheric physics. An overview of beam
effects on satellites can be found in Lai [11]. In fact, Hough [12]
describes the trajectory perturbations on a ballistic missile due to
Lorentz force. However, this work is the only study of the effect of
the Lorentz force on a spacecraft’s orbit that has been found by the
authors. The LAO was first proposed by Peck [2].

Other studies have proposed various ways to use charged
spacecraft and magnetic field interactions for many applications.
King et al. [13] and Schaub [14] present the idea of coulomb
spacecraft formations (CSF). Satellites in a CSF formation are
electrostatically charged, and some measure of formation control is
provided by the coulomb forces between the various satellites. The
CSF system faces many of the same system architecture challenges
as LAO. However, due to plasma shielding, a CSF is impractical in
LEO, whereas an LAO is more effective in LEO, where the magnetic
field strength is greater. In addition to tethered satellites, Bergamin
et al. [15] propose propellantless electromagnetic propulsion via a
current loop partially shielded by superconductive magnets. A
further application of charged satellites in a magnetic field is given by
Tikhonov [16]. He proposes the use of nonuniform charging on a
satellite to control attitude via the Lorentz force. This idea faces many
of the same challenges and dynamics as the LAO systems but are not
considered further here. The scope of the present study extends only
to orbit dynamics.

B. Issues and Complexities in LAO

A convenient and highly simplified model of an LAO consists of
the geomagnetic field as a simple dipole, the magnetic north pole and
the true north pole perfectly aligned, and the space environment as a
true vacuum. Of course, these simplifications neglect certain
subtleties. The Earth’s magnetic field is nonuniform and varies in
time; it is frequently described by a spherical-harmonic expansion.
The solar wind causes large spatial and temporal deformations of the
field [4]. In addition, magnetic north does not align with true north;
magnetic north is about 10 deg south of the true pole. Furthermore,

because the field rotates with the Earth, the relationship between the
two poles is not constant in an inertial frame. The simpler nontilted-
dipole model allows for clean, simple analytical results to be
obtained. These simple results provide both insight into the problem
and a starting point for a more in-depth analysis.

The Earth’s plasma environment is also difficult to model, but
plasma effects turn out to be critically important for the design of a
practical LAO spacecraft. Plasma composition, temperature, and
density vary both spatially and temporally over a large range of
values in ways that are currently unpredictable. The interactions
between a charged satellite and the plasma are also difficult to model
and are affected by these subtleties. So predictions of the charge
decay of a satellite are uncertain at best [4].

The scope of the present study does not include most of these
complexities. Most cases here assume a nontilted-dipole geo-
magnetic field. The implementation of an LAO is only briefly
discussed, and most of what follows assumes that a required charge
on the satellite can be delivered, regardless of plasma environment or
power constraints. This paper focuses on the basic orbital dynamics
of an LAO and presents dynamically interesting cases with
applications inspired by these results. We focus on these applications
in the hope that they may motivate further work in the practical
aspects of building an LAO-capable spacecraft.

C. Possible System Architecture

There appear to be many ways to achieve some level of charge on a
spacecraft. The present study considers only the amount of charge,
not how it is achieved. Any method that achieves a certain
electrostatic charge on the satellite will bring about the same orbital
dynamics. A possible system architecture is shown in Fig. 1. This
system is somewhat reminiscent of a Van de Graaff generator [17]. A
boom extending from one side of the satellite contains an electron
gun. This electron gun interacts with the ambient plasma and expels a
beam of electrons. The loss of electrons through the beam causes a
net positive charge to build up on the satellite. A conductive sphere is
placed around the main spacecraft bus to hold this charge.

The matter of how much charge can be held on a satellite is no
mean problem, but it is not considered in depth here. In general, the
best way to store charge on an LAO spacecraft is a system that
maximizes the average distance between charged particles, and thus
the potential associated with them, while minimizing the mass of the
storage apparatus. Furthermore, exploiting the geometry of the
plasma sheath structure that arises due to ionospheric interactions
may provide significant additional capacitance over the vacuum
case. The power required to combat incident plasma currents is not
yet well understood, although power, rather than capacitance, will
ultimately limit the achievable charge-to-mass ratio.

III. Equations of Motion

We derive equations of motion for LAOs. These equations can
include far more detailed models of magnetic field orientations and
representations, but doing so obscures the fundamental behaviors for
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Fig. 1 Possible LAO system architecture.
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aminimal improvement in precision. We deal first with the simplified
case of a single charged satellite in a dipole field that is not tilted with
respect to the axis of rotation of the planet. This resultis followed by a
more general treatment of energy and angular momentum changes
due to the Lorentz force.

A. Equations of Motion in a Nontilted-Dipole Field

The relevant vectors are represented in an Earth-centered inertial
spherical coordinate system. The spherical coordinates consist of
radius r, colatitude angle ¢, and azimuth from the x direction 6, as
shown in Fig. 2. The magnetic field is expressed as

B = % [2 cos ¢F + sin ¢ + 06] 3)

where B| is the strength of the field in Wb - m. The field rotates with
the Earth. In the nontilted field case, r and ¢ are equivalent in both the
rotating field frame and the inertial frame. Because the dipole is
axisymmetric, the magnetic azimuth does not directly contribute to
the Lorentz force. For the Earth, the geographic North Pole is in fact
the magnetic South Pole; the north side of a compass needle is
attracted to the geomagnetic south pole. Because we desire a
coordinate system that has geographic north in the z direction, we
work with a dipole field that is essentially flipped upside down. We
correct for this fact by using a B, term that is negative.
The acceleration in inertial coordinates is given by

a=F/m=—ﬁ3r+g(v—wEﬁxr)xB “4)
r m

where g/m is the charge-to-mass ratio of the satellite in C/kg, and n
is a unit vector in the direction of the true north pole.

Expressing the Lorentz force (per unit mass) in the spherical
inertial frame yields

4B —rBsin®p + wgrsin’¢
F, =Zr—§ 2r0sin ¢ cos ¢ — 2wgr cos ¢ sin ¢ &)
7sin ¢ — 2r¢ cos ¢
Combining the Lorentz term with gravity and the standard

accelerations in spherical coordinates gives the following three
equations of motion:

. . B, -
F= résin’g + g’ — % - %r—;’ [rfsin’p — wprsin’g]  (6)

. B .
rg = —2i¢+r02 sin ¢ cos ¢ + i—;)Z[rﬁsimpcosqb
mr-

— wgrcos ¢sin @) @)

résin¢ = —2iésin¢>— 2r¢écos¢ + %%[isimﬁ— 2rd cos @)
®)

=

Fig. 2 Spherical coordinates used in the derivation of the equations of
motion.

Equations (6-8) represent a sixth-order system that describes the
motion of any orbit of a charged satellite in a nontilted-dipole
magnetic field.

B. General Energy and Angular Momentum Change

General time rates of change of energy and angular momentum
due to the Lorentz force are derived. With these derivatives, the time
rates of change of various orbital elements can be found following the
method of Burns [18]. The work-energy principle states

E=v-F )

where E is the total energy of the system per unit mass, F is the
applied force per unit mass, and v is the body’s velocity. Including
the Lorentz force gives

E:%V[Bx(wEﬁxr)] (10)
Equation (10) shows that only the rotation of the magnetic field
allows the Lorentz force to do work on the satellite. A general
magnetic force is conservative; thus the change in energy comes not
from the magnetic field, but indirectly from the rotation of the Earth.
Equivalently, a moving magnetic field is associated with an electric
field, and this induced electric field can do work on a satellite.

Applying the triple-cross-product identity to Eq. (10) yields
E=Lofv-R)(B-r) - (v-1)@-B) ()

Equation (11) is general. It describes any orbit or magnetic field
configuration.

Change in orbital angular momentum arises from the torques
applied to the system by the Lorentz force, or

h=rxF, (12)

where h is the angular momentum per unit mass of the system.
Substituting for F; and simplifying gives

h= %[(B V- (r-VB—w:(B-1)Axr)]  (13)

Depending on the orbital and magnetic configurations, we may
change both the magnitude and direction of the angular momentum
vector. Changing the direction of this vector allows some measure of
control over both the inclination and right-ascension angles of the
orbit. This control is examined in more detail for two cases in Sec. IV.

IV. Applications

Using the Lorentz force to achieve a mission objective is
sometimes not an intuitive exercise. A charged spacecraft cannot
control the direction of the force, only magnitude and perhaps the
sign, depending on the implemented architecture. The force is also
perpendicular to the field-fixed velocity of the spacecraft. Were the
magnetic field not rotating, no energy could be added to an LAO; but
with the rotating field, the energy and angular momentum of the orbit
can be changed in most cases. Also, with appropriate control of the
charge on the satellite, controlling energy and momentum allows for
regulation of most of the orbital elements of the spacecraft. Two
specific cases are developed here: the polar circular orbit and the
general equatorial orbit, both in a nontilted-dipole field. Addition-
ally, the Earth’s oblateness effects are examined.

A. Polar Circular Orbit in a Nontilted-Dipole Field

We apply the general energy and momentum relationships in
Eqgs. (11) and (13) to two specific cases to develop some simple and
interesting results.

1. Analytical Results

First we examine a polar circular orbit in a nontilted-dipole
magnetic field. In this case, Eq. (11) becomes
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E:Zga)EBO\/ﬁr‘s/2 sin u cos u (14)
m

where r is the radius of the orbit, and u is the argument of latitude of
the satellite. The argument of latitude is the angular position of the
satellite around the orbit measured from the right ascension of the
vehicle in the equatorial plane. The expression in Eq. (14) is an odd
periodic function and thus contributes no secular change to the
energy of the orbit. However, the radius of the orbit oscillates with a
frequency of twice per orbit. Expressing the radius of the circular
orbit as a function of energy, and using Eq. (14), gives an expression
for the time rate of change of the radius of the orbit:

q By 1

F=4—=—wp—— i 15
2 meﬁr sinu cos u (15)

For constant g/m, Eq. (15) is periodic over an orbit. The radial
velocity (and thus eccentricity) remains small for a constant g/m,
keeping the assumptions of a Keplerian polar circular orbit valid. The
simulation results shown in Sec. IV.A.2 back up this assumption,
showing that deviations in eccentricity and inclination remain small.
However, if we choose to control the charge as a function of the
argument of latitude, a secular change in the radius (and eccentricity)
of the orbit can be obtained.

Similarly, the angular momentum rate of a circular polar LAO is
examined with Eq. (13), with an orthogonal coordinate system
having the x direction along the line of nodes, the y direction aligned
with the north pole, and the z direction necessarily along the orbit’s
angular momentum vector. With this coordinate system, the
properties of a polar circular orbit, and Eq. (13), the vector derivative
of angular momentum becomes

12
—v,sin‘u
: q By e
h=2——1 v, sinucosu (16)
mr .
rwg sin u cos u

Equation (16) represents the time rate of change of the angular
momentum vector due to the Lorentz force for a circular polar LAO.

We use the vector derivative in Eq. (16) to define several scalar
derivatives of interest, including the time rates of change of the
inclination angle, the right-ascension angle, and the magnitude of the
angular momentum. First, the derivative of the scalar angular
momentum magnitude is given by

. B
h=21—0wEsinucosu 17)
mr

Thus, the magnitude of the angular momentum vector changes in a
purely periodic manner under a constant charge.

The inclination angle i is defined in terms of the angular
momentum vector h by

n-h=hcosi (18)
Differentiating Eq. (18) to find the time rate of change of i gives

di _ =2(q/m)(Bo/r) sinucos ulv, —rogeosil (o
dr rv,. sini

where the notation di/dt is used for clarity. Again, for constant
charge, Eq. (19) is nonsecular, oscillating at a frequency of twice per
orbit.

Using the results of Burns [18], Eq. (16) is used to find the time rate
of change of right ascension of the ascending node. Recognizing that
in a circular polar orbit, the circular velocity v, can be replaced by rit,
the derivative of right ascension is

: B
Q=222 [Tgin2ui 20)
mr-\\pn

Equation (20) is an even secular function. The ascension of the orbit
changes over the course of one orbit.

We can determine an average change in right ascension per orbit
by integrating Eq. (20) around one complete orbit. The change in
right ascension per orbit (A€2) is given by

B
_og 450 T

AQ = 5
mre\

@n

Thus, for the circular polar orbit in a nontilted-dipole case, we can set
an arbitrary change in right ascension per orbit. Defining the average
time derivative of right ascension as Qavg, equal to Eq. (21) divided
by the orbital period, and inverting the result gives the following
simple relationship between the charge-to-mass ratio ¢/m and the
average right-ascension rate Qavg, circular-orbit radius r, and
magnetic field strength Bj:

g Qe
=B @)
0

We can now calculate the necessary charge-to-mass ratio for any
desired right-ascension rate.

Changing the right ascension of a polar orbit essentially amounts
to changing longitude on the groundtrack of the satellite (see Fig. 3).
Arbitrary right-ascension control can greatly increase the efficiency
of a polar LEO imaging satellite. If full charge control is possible
(both positive and negative charges), then the satellite can acquire a
target faster and can stay in the neighborhood of the target longer. In
fact, if an average right-ascension rate equal to the rate of the Earth’s
rotation is acquired, then a satellite can have a single-orbit repeat
groundtrack. The satellite would pass over exactly the same points on
the Earth during every orbit. Thus, the orbit becomes a LEO GT-1
orbit. This groundtrack would allow a satellite to pass over an
imaging target every 90 min rather than, at most, twice a day for an
uncontrolled LEO polar satellite.

Solving for the required charge-to-mass ratio for an LAO GT-1

yields
CAT (23)
m)er By

When evaluated for a circular orbit with 400-km altitude, Eq. (23)
reveals that a g/m of 2.831 C/kg is required for geosynchronous
behavior.

Another possible application is a sun-synchronous LEO polar
orbit at any altitude. The sun-synchronous condition is a right-
ascension rate of Q2 = 27 rad/year. This rate yields a charge-to-
mass ratio for maintaining a sun-synchronous orbit of

Q.
o)
ss 0

For example, a 400-km orbit requires a ratio 0.0078 C/kg for sun
synchronicity.

Fig. 3 Graphical representation of the vectors involved in an LAO GT-
1 orbit.
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Table 1 Physical parameters common
to all simulations

Parameter Value

g 7.272¢-5 rad/s
i 3.986¢14 m?/s?
B, —8.000e¢15 Wb - m

Table 2 Initial conditions for polar
circular orbit

Property Value
Altitude 400 km

q/m 2.831 C/kg
Integration time 5 orbits

The nonperiodic change in right ascension persists for orbits that
are not necessarily polar or circular. By extending the process used to
derive the polar case to a general orbit (still assuming a nontilted-
dipole field), an expression analogous to Eq. (22) is found for a
general orbit:

1 _ Qavga3 (1 _ e2)3/2
m B,
] ©3)

X
w /a3/,u(1 _ ez)z Cosiezf[(l—ez)'e/;fl]z cos20 _ |

Equation (25) is valid for any elliptical orbit under the influence of a
nontilted-dipole.

2. Numerical Simulation

A numerical simulation is developed to test several of the previous
analytical results. The simulation is a Runge—Kutta integration of the
sixth-order system defined by Eqs. (6-8), performed by Matlab. The
simulation is valid for any orbit for a charged satellite in a nontilted-
dipole field. Table 1 shows the set of physical parameters common to
all simulations.

The polar circular orbit is integrated from the initial conditions in
Table 2. The charge-to-mass ratio of 2.831 is chosen based on
Eq. (23). Figure 4 shows the resulting orbital path. This path is

% 10

]

8
x 10

Fig. 4 Track of a GT-1 LAO orbit in a frame rotating with Earth with
q/m =2.83 C/kg.

Acceleration (N/kg)
()
T
1

0 1 L L 1 1 1 1 1
0 0.1 0.2 0.3 0.4 05 06 07 08 09 1
Time (orbital periods)

Fig. 5 Comparison of gravitational and Lorentz acceleration
magnitudes for a GT-1 LAO orbit with g/m = 2.83 C/kg.

plotted in a frame that rotates with the Earth, to highlight the GT-1
nature of the orbit. The orbit is shown to scale with the image of the
Earth. Figure 4 shows a slight deviation from a perfect GT-1 orbit.
This discrepancy is explained by Fig. 5. This figure compares the
forces acting on the satellite over one orbital period. The magnitudes
of both gravity and the Lorentz force are shown. In this GT-1 polar
scenario, the Lorentz force is quite significant with respect to gravity,
which causes large orbital element changes, violating the osculating-
element assumption. A large Lorentz force causes the orbital
eccentricity to be nonzero, creates wobbles in the inclination, and
keeps the orbital speed from being constant. These perturbations on
the orbit cause slight inaccuracies in the expressions derived in
Sec. IV.A.1 related to a polar circular orbit.

However, the small difference in calculated and desired right-
ascension angles is due only to wind up of small errors in the
predicted right-ascension rate over time. The top plot of Fig. 6 shows
both the numerically calculated and the analytically derived right-
ascension-angle rates. The analytical results are based on the
expression in Eq. (20); the numerical result is based upon changes in
the angular momentum vector of the orbit determined from the state
of the system at any given time. As expected, the right-ascension rate
is zero as the satellite crosses the equator, and it is large and positive
as it crosses the poles. The average values of the curves in Fig. 6 are

Right Ascension Rate

MNumerically Calculated
+  Analytical Expression

10t Right Ascension Rate Error
T T T T T T T
@t 4
[=]
L]
=2
5
g1t :
0 I I L 1 h L
0 1 2 3 4 5 6 7 8
Time (hours)

Fig. 6 Time rate of change in right ascension for a GT-1 LAO orbit
with g/m =2.83 C/kg. The top plot shows both analytical and
numerical calculations of the right ascension. The bottom plot shows the
error between these two curves.
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Numerically Calculated
+  Analytical Expression

dE/dt (m%/s3)

4 5 6 7 8
Time (hours)

Fig. 7 Time rate of change of orbital energy for a GT-1 LAO orbit with
q/m =2.83 C/kg.

greater than zero, causing a secular increase in the right ascension of
the orbit. These two curves match almost exactly, with small, but
persistent, errors. The rate error is shown in the bottom plot of Fig. 6.
The size of the errors is an order of magnitude smaller than the rates.
In practice, closed-loop control of the charge might be used to trim
the errors that arise due to unmodeled dynamics in the open-loop
system. The closed-loop case is addressed later in Sec. V.C.

Finally, Fig. 7 shows the time rate of change of orbital energy
throughout the simulation. The solid line represents the numerically
calculated energy rate based on the state vector at each time, and the
dotted line represents the derived expression shown in Eq. (14).
These two curves match closely. However, the energy rate is
centered around zero, and thus there is no secular change in the
orbital energy.

B. Equatorial Orbit in a Nontilted-Dipole Field

A second simple case to consider is an equatorial orbit in a
nontilted-dipole field. The true equator and the magnetic equator are
aligned in this situation, and the magnetic field is perpendicular to
these planes. The eccentricity can be nonzero in this case.

1. Analytical Results
In the equatorial eccentric-orbit case, Eq. (11) becomes

E= inBoﬁ[a(l — e?)]7?esinv(1 + e cos v)? (26)
m

where a is the orbit semimajor axis, e is the orbital eccentricity, and v
is the true anomaly. Note the dependence on the eccentricity e. The
Lorentz force cannot add energy to a circular equatorial orbit.
Equation (26) leads to a time rate of change of the semimajor axis of

B
a= 21ea2a)5—0[a(1 — )2 sinv(l 4+ ecosv)?  (27)
m VI

Again, the rate in Eq. (27) is nonsecular, but with proper modulation
of g/m, the size of the equatorial orbit can be controlled using the
Lorentz force.

Using the specifics of an equatorial orbit in Eq. (13) gives a time
rate of change of vector angular momentum of

h:-i(r-v)B—Sﬁ (28)
m r

where h is a unit vector in the h direction. Because the rate in Eq. (28)

only has acomponent in the direction of h, it represents only a change

in the scalar magnitude of h. This scalar momentum change is

expressed as

h=2LB,/ala(l — ) esinv(l + ecosv)>  (29)
m

which is another periodic function with no secular terms. Here, the
direction of & cannot be controlled, which means the inclination and
right-ascension angles cannot be changed.

Following Burns [18] and using Eqs. (26) and (29), an expression
for the time rate of change of orbital eccentricity under the Lorentz
force in a equatorial orbit is

. q, sinv(l + ecosv) 1 wg
e=——"Dby a3/2(1_ez)1/2_ﬁ

m la(1 — e2)P?
which is periodic in true anomaly. If one starts with an initially
circular orbit, the eccentricity of the orbit should be changed to
facilitate the control of energy.
Also from Burns [18], we develop an expression for the argument
of perigee rate using Eqs. (26) and (29). Simplification gives

. (g/m)B, 2 2ecosv
CTTURE e = " fa(l - P
CoSsv WE COSV |,
+ e(l—e) 2~ N :|V 3D

where the standard time rate of change of true anomaly for a
Keplerian orbit was used. The first term in brackets in Eq. (31) gives
rise to a secular change in the argument of perigee for a constant
charge-to-mass ratio. This secular perigee change has many
interesting, if somewhat esoteric, applications. Perigee control
allows for the cancellation of various natural perturbations on the
argument of perigee, such as J, effects and lunar and solar tides.
Another use may be to create a Molniya-type orbit at zero inclination
(and, most likely, other inclinations). Building on the same ideas as
the GT-1 LAO orbits discussed previously, perigee control also
allows for matching the Earth’s rotation rate. The line of apsides of
such a synchronous orbit would remain at a constant longitude on
Earth’s surface. Thus, LAO creates possibilities for other kinds of
synchronous orbits, rather than just GT-x orbits.

To evaluate this concept of precessing the line of apsides, we seek
an expression for the g/m necessary to generate a certain average
perigee rate. Integrating Eq. (31) around one orbit gives an
expression for change in the argument of perigee per orbit Aw:

_ 4r(q/m)B,
A= Jla(l — PP

For a certain desired rate of change in the argument of perigee @,
we require that Aw/At = wy, Where we set At to be one orbital
period. Setting the resulting expression for Aw equal to Eq. (32) and
solving for g/m gives a required charge-to-mass ratio for some
desired rate of perigee change:

] (30)

(32)

q _ d)desa3(1 — 62)3/2
= (33)
m ZBO

Equation (33) has similar dependencies as Eq. (22), the charge-to-
mass ratio required for a particular right-ascension rate for a polar
circle. However, in the equatorial case, the eccentricity plays an
important role in the magnitude of charge required. A higher
eccentricity corresponds to a higher velocity at perigee for a given
orbit size, which makes a more effective use of the Lorentz force,
allowing for a smaller charge-to-mass ratio. Equation (33) applies for
any desired rate of change for argument of perigee, including
mitigating oblateness and third-body effects, as well as introducing
synchronous behavior. However, larger rates introduce inaccuracy in
the g/m predicted by this osculating-elements approach. The
derivation of Eq. (33) assumes that all the other orbital elements are
changing slowly or are not explicit functions of v, and this may not be
the case with a large charge-to-mass ratio.

The secular change in the argument of perigee under a constant
charge also arises in nonequatorial orbits. Following the same
method as for the equatorial case, but generalized for any elliptical
orbit, yields an expression for the charge-to-mass ratio required for a
desired perigee rate:
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q _ d)desaz(l — 62)3/2

m Bycosi

3 2 (1= )2 — 1P cos 2]~
X|:3—wE\/%(l—ez)2cosie IC e)2 | cos wi|
e

(34)

A subtlety in the derivation of Eq. (34) arises from the coupled
changes in right ascension and argument of perigee in an inclined
orbit, hence the similarities between Eqs. (25) and (34).

Equation (34) gives the time rate of change of perigee relative to an
inertial coordinate system. This rate is the superposition of two
different rates: the rate of change of argument of perigee within the
orbit plane, and the change in perigee due to the fact that the right
ascension, and thus orbital plane itself, is changing. To create the w-
synchronous orbit, the rate of in-plane perigee change must be equal
to the rotation rate of the Earth. Subtracting the rates due to right-
ascension rate of change gives

q wga*(l—e?)3?
—=— 35
m 2B, cos i (35)

which differs only by a factor of 1/cosi from Eq. (33). Again,
Eq. (35) is only valid for situations in which the desired rate of
perigee change is based on a relationship with the rotating Earth,
rather than some absolute inertial rate.

2. Numerical Simulation

The equatorial, eccentric, constant-charge simulation is initialized
with the values shown in Table 3, using the same model as in the case
of the polar orbit. The chosen value of ¢/m is designed to produce an
Earth-synchronous motion of the perigee of the orbit. The value is
calculated from Eq. (33), with a desired rotation rate designed to
match the Earth’s rotation, or @y = wg.

Figure 8 shows the orbital path of the satellite over one day. Again,
the orbit is to scale with the depiction of the Earth as viewed from
above the north pole. The orbital path is shown in a coordinate system
rotating with the Earth.

The rotating frame view in Fig. 8 shows that the charge-to-mass
ratio used in the simulation was not large enough to perfectly cancel
the Earth’s rotation with perigee motion. If the correct charge were
used, the rotating frame view would show only a single curve. The
top plot of Fig. 9 shows the numerically calculated and analytically
derived arguments of perigee for this case. The numerical values are
represented by the solid line. The dotted line represents the analytical
values, calculated by numerically integrating Eq. (31). Although
these two curves match quite precisely, we see that the perigee angle
does not reach 360 deg after one day as intended. Figure 9 gives
confidence in the result for time rate of change of perigee expressed
in Eq. (31), but shows that accuracy is lost in integrating this data to
obtain Eq. (33). The perigee error, the difference between the
numerical and analytical curves, is shown in the bottom plot of Fig. 9.
The error is significantly smaller than the perigee values. In the
integration of Eq. (31), we assumed that the semimajor axis and
eccentricity were changing slowly enough to be independent of true
anomaly. The charge-to-mass ratios are large enough in this case to
make that a poor assumption. However, for a smaller desired perigee
rate, like mitigating J, effects, Eq. (33) is quite accurate. Creating the

Table 3 Initial conditions for equatorial
constant-charge integration

Property Value

Perigee altitude 400 km
Apogee altitude 1500 km
Eccentricity 0.075
Semimajor axis 7328 km

q/m —1.774 C/kg
Integration time 1 day

% 10

8

&
%10
Fig. 8 Earth-fixed orbital path of an equatorial constant-charge LAO
satellite with ¢/m = —1.77 C/kg, calculated for synchronous perigee
movement.
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Fig. 9 Argument of perigee angle of an equatorial constant-charge
LAO satellite with ¢g/m = —1.77 C/kg. The top plot shows both
analytical and numerical calculations of the argument of perigee. The
bottom plot shows the error between these two curves.

Earth-synchronous effect is certainly possible, it just requires a larger
q/m than predicted. Creating a closed-loop control system to adjust
g/m can account for this variation, in addition to correcting for
imperfections in the magnetic field model, plasma variations, etc.
Equation (33) represents a starting point for system design and
closed-loop control.

The results demonstrate that a constant-charge equatorial LAO
satellite can have an arbitrary time rate of change of argument of
perigee. The required charge-to-mass ratio for a desired rate depends
solely on the initial orbit configuration and the magnitude of the
desired change. The orbital energy and eccentricity also change in a
predictable manner, but with no secular variations.

The simulations, both in this section and in Sec. IV.A.2, have
shown excellent agreement between the derived equations of motion
and the analytical expressions for the orbital changes in a Lorentz-
augmented orbit. We see that useful and desirable changes can be
made to orbits using this system. Although only simulations of polar
and equatorial orbits are presented here, an arbitrarily inclined orbit
will just combine the properties of these two results in some way.
Furthermore, the approximation of osculating elements yields
convenient expressions that provide insight into the behaviors for
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only small inaccuracy. Only constant charges are examined here.
Simple charge controls can be applied to produce secular changes in
any of the perturbations equations derived previously. Atchison et al.
[19] provide a closer examination of the nonconstant-charge case.

C. Mitigation of the Earth’s Oblateness Effects

The nonsphericity of the Earth causes secular changes in both the
right ascension and argument of perigee of a spacecraft, herein
referred to as J, effects [1]. The generally accepted secular time rates
of change due to J, are

3L,R; /It cosi

Cr="37 g (- &)

(36)

) 3J,R: /4 — 5sin’i
W= 1 (A=ap (37
It is trivial to use LAO to cancel the effect of J, on either the right-
ascension angle or the argument of perigee. The rate calculated with
Eq. (36) or Eq. (37) can simply be substituted into Eq. (25) or
Eq. (34), respectively. For example, in an equatorial orbit with
perigee at 400-km altitude and apogee at 1500 km, J, causes the
argument of perigee to change by about 12.4 deg /day. The charge-
to-mass ratio required to overcome this perturbation is about
0.042 C/kg.

There are orbits in which a constant-charge LAO can cancel the
secular changes in both Q2 and w. These orbits can only exist below
the J, critical angle of i &~ 63.4 deg or above the critical solution of
i ~ 116.6deg . Additionally, the effect of the Lorentz force must be
equivalent to the J, effects in both the right ascension and the
argument of perigee. This condition is true when the orbit in question
satisfies the following expression:

3—K 4—5sin%i
1—K  2cos?i (38)

where K is given by

la® 21— o2)1/2 _ 112
K =wg a_(l —e?)? cosiE [(1—¢%) : 1]* cos 2w (39)
I

e

Although Eq. (38) does not easily yield simple relationships among
the orbital elements, a minimum semimajor axis for this condition
can be found. Under the most optimistic assumptions (namely,
e =0), the expression in Eq. (38) can be satisfied only if the
polynomial

3% 053 + cos?i— PEcosi+1=0 (40)
n n

where n is the mean motion, has a valid solution. These solutions
exist only when wy/n > 1. Thus, the semimajor axis must exceed
GEO altitude to fully cancel J, effects with a constant charge. At
these altitudes, the J, and LAO effects would generally not be the
dominant perturbative forces on the satellite.

V. Effects of a Tilted-Dipole Magnetic Field

The preceding analysis assumes the geomagnetic field to be a
dipole for which the magnetic north pole is aligned with the Earth’s
geographic north pole. Although this assumption allows for several
clean analytical results to be calculated, a more accurate model of the
geomagnetic field is a dipole field for which the north pole axis is
tilted with respect to true north. The actual geomagnetic north pole
lies in northern Canada, tilted roughly 10 deg from geographic north.

A. Tilted Dipole and GT-1 Behavior

The tilted-dipole model is implemented with two new parameters:
o represents the angle between the magnetic north pole and
geographic north pole, and €2,, represents the longitude of the

magnetic north as measured from the inertial x axis. Because the
geomagnetic field is locked in step with the Earth’s rotation, €2,
varies with respect to time as wgpf + €2,,(0). The same general
perturbation procedure as in Sec. IV is applicable to the tilted-dipole
case. Applying the vector model of a dipole field, B=
(Bo/r)[3(N - £)f — N], where N is a unit vector along the magnetic
north pole, to the general energy-rate equation (11) yields a new
energy-rate relationship based on a tilted dipole:

. q [1 4+ ecos(u — w)?
b= B

X (2sini(cosu + e cos w){cos(£2,, — ) sin cos u
+ sin(2,, — Q) cosisina sin u + sinicos o sin u}
— esin(u — w)[3 sin u sin i{cos(£2,, — ) sin« cos u

+ sin(€2,, — ) cosisinasinu + sin i cos a sin u} — cos «])
(41)

Equation (41) is for a general elliptical orbit in a dipole field with any
tilt. Equation (41) includes the nontilted-dipole case and
encompasses the expressions in Eqs. (14) and (26). A similar
expression can be derived for the angular momentum rate, which is
not presented here for the sake of brevity. However, this angular
momentum expression can be used to derive a relationship for the
time rate of change of right-ascension angle under a tilted-dipole
field, given by

o4 By [1 + ecos(u — w)]?

[a(1 =P

— 3esin(u — w) cos u] + e sin(u — w)[sina cos(£2,, — )]

2wp [a(1 - )PP
VI 4 ecos(u — w)]

=—— cos ¢,,[—2sinu — 2e sinw
msin i

cos ¢,, cos i sin u} (42)

where ¢,, is the satellite’s magnetic colatitude:

cos ¢,, = cos(£2,, — ) sinwcos u

+ sin(€2,, — ) cosisino sin u + sin i cos & sin u (43)

The effects of adding a tilt angle to the dipole field are numerically
simulated based on a generalization of the nontilted-dipole
integrations. The results of two simulations comparing the nontilted
dipole and the tilted dipole are shown in Fig. 10. This figure shows
two integrations, both beginning with same initial conditions:
namely, a 400-km-alt polar circle with a charge-to-mass ratio
calculated to give GT-1 behavior. The results are plotted in an Earth-
fixed coordinate system. The left plot shows the integration in a
nontilted dipole, giving the familiar GT-1 orbit. The right plot
displays the result of a simulation including a dipole field tilted at an
angle of 10 deg. This orbit is quickly driven away from GT-1
behavior. Each simulation lasts for a period of one day.

The cause of this deviation is found in the terms in Eq. (41) arising
from the tilted dipole. In particular, the term of the form

E o cos(£2,, — 2) sin a sin icos?u (44)

causes a secular drift in the energy of the orbit away from its initial
value. Initially, the quantity cos(£2’) is constant, where 2’ is defined
as the quantity €2,, — €2, because this condition embodies the LAO
GT-1 behavior. A term similar to Eq. (44) also arises in the rate of
angular momentum expression. Thus, E and h drift away from their
nominal values, causing the spacecraft charge-to-mass ratio to be
unsuitable for GT-1 behavior. As the orbit moves away from the GT-
1 behavior, €2’ is no longer constant, and the spacecraft settles into a
periodic motion that does not resemble GT-1.

The expression in Eq. (44) should go to zero when Q" = £90 deg.
Figure 11 shows numerical simulations for both of these initial orbit
longitudes. The two plots in Fig. 11 represent the orbital energy of the
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Fig. 10 Comparison between two integrations with the same initial conditions. The left plot uses a nontilted-dipole field; the right plot used a dipole field

titled to 10 deg.
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Fig. 11 The orbital energy of two tilted-dipole integrations with g/m = —1.77 C/kg, set to give GT-1 behavior. The left plot is for 2’ = —90 deg. The

right plot shows an initial angle of 2’ = +90deg.

spacecraft throughout the simulation. The left plot shows
Q' =-90deg, and the right displays €' = +90deg. In the
—90- deg case, the orbital energy remains nearly constant, and the
spacecraft remains close to the intended GT-1 region. However, in
the +90- deg case, the energy varies widely, and the satellite does not
maintain GT-1. This behavior can be attributed to the sign changes
that cos(£2") makes around £90deg. At —90deg, the sign of the
cosine function switches in such a way to push the orbital energy
back toward its nominal value. At 490 deg, the opposite happens.
Essentially, Q' = —90 deg is a stable equilibrium and Q" = +90 deg
is an unstable equilibrium.

Solutions near 2’ = —90 deg remain bounded, but periodic, in the
quantity €’. The error in Q' increases as the initial value of ' gets
further from —90 deg, until the system becomes unstable at ' = 0 or
180 deg. For the LAO GT-1 concept to be a viable application, a
nearly constant arbitrary value of Q' should be maintainable.
However, due to symmetry of the polar orbit, a range of only 180 deg
of 2’ allows for full longitudinal coverage. Thus, only the bounded-

error cases of 180 deg <’ < 360 deg must be considered. The next
section describes how one might modulate the charge as part of a
feedback-control scheme to compensate for this error in the open-
loop dynamics.

B. Recovery of GT-1 Using a Nonconstant Charge

To recover GT-1 behavior under the influences of a tilted-dipole
magnetic field, a scheme of charge modulation is developed. Again,
the goal is to find a time-varying charge-to-mass ratio that forces a
tilted-dipole LAO to track these nontilted solutions. First, the
nontilted field solution is further developed analytically. These
analytical solutions provide a desired path to track in the tilted-dipole
case. Rewriting Eqgs. (14) and (20) using the charge-to-mass ratio in
Eq. (23) gives

p = —wg./ap sin2u (45)
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Q p = wg — wpcos2u (46)

where the subscript D refers to a desired quantity.

The rates of energy and right-ascension change must be matched
with the desired rates. Equations (41) and (42) are used, with the
eccentricity set to zero. Simulations show that the eccentricity of an
initially circular orbit remains small even as a GT-1 orbit is
attempted. This simplification gives

E=2LAL +2LALcos2u + L AM sin2u (47)
m m m

Q=2cem—Lcmeos2u+LcLsin2u (48)
m m m

with the following definitions:

A= wgBy/pa=>?sini (49)
BO wg .
C=— 1 4+ —=a’?cos 50
a3sini( +ﬂa cow) (50)
L = cos(L2,, — Q) sina (51)
M =sin($2,, — ) cos i sina + sinicos o (52)

Noting how Eqs. (47) and (48) depend on the argument of latitude u,
we define a charge-to-mass ratio with the same frequency
dependencies:

% = k; + k, sin2u + k3 cos 2u (53)

Thus, g/m has a constant baseline with a sinusoidal curve
superimposed.

Substituting the charge-to-mass in Eq. (53) into Eqs. (47) and (48)
yields

E = (kAL + Y%oAM + Y;AL) + (k,AM + k,AL) sin 2u
+ (kAL + ksAL) cos 2u + (2kyAL + 1k;AM) sin 4u
+ (—k,AM + k3 AL) cos 4u (54)

Q = (k,CM + Y, CL — 'k3CM) + (k,CL — k,CM) sin 2u
+ (kyCL + k3CM) cos 2u + (—3k,CM + k3 CL) sin 4u
+ (—2ky CL — Y3 CM) cos 4u (55)

These two expressions, Egs. (54) and (55), are set equal to the desired
rates of change given in Eqgs. (45) and (46), respectively. For these
equalities to always hold true, each frequency component in both the
energy and right-ascension expressions must equate to its
counterpart in the desired track equation. Between the two different
expression, there are 10 different conditions (i.e., two each for the
sin 2u, cos 2u, sin4u, cos 4u, and constant terms).

Because there are 10 linear equations for only three unknowns (&,
k>, and k3), the system is overdetermined. The system can be solved
with a least-squares regression; however, not all can be satisfied
simultaneously, resulting in an imperfect solution. Instead, we
choose to solve a full-rank square subspace of the 10 equations.
Three equations concisely capture the desired behavior. The most
important conditions are the constant term of 2 to ensure GT-1
behavior and the constant and first sine term of the E to keep the orbit
near its nominal state. Thus, the linear system that is solved for each
coefficient is given by

AM M AL Tk, 0
AM AL 0 ky | = | —0kJap (56)
cm leL —iem || k wg

The solution of Eq. (56) is substituted into Eq. (53) to obtain a value
of g/m at a given point in the orbit.

If A, C, L, and M are treated as constants, which assumes 2
changes exactly with the rotation of the Earth and the other orbital
elements are constant, the system in Eq. (56) can be solved
analytically. Carrying out this solution yields the desired coefficients
for defining the charge-to-mass ratio as

wp(wp JalCM? + wg JajiCL* + 2AL?)
- ACM(L? — M?)
0 —2(A + 2wg JapiC)wgL
ACM(L? — M?)
—205(2AL? — AM? + wy JafiCL? — wg \JaiCM?)
- ACMGL? — M?)

k1

(67

k3

In principle, the coefficients in Eq. (53) will reproduce GT-1
behavior under a tilted-dipole magnetic field. However, this
scheme is open-loop and the resulting system is not guaranteed to be
stable.

Figure 12 shows the results of a simulation using the charge-to-
mass ratio calculated by Egs. (53) and (57). All simulations in this
section begin at a time at which Earth-centered and inertial
longitudes are equal. The magnetic north pole is placed at its physical
location (¢ = 10deg and €2,, = —114 deg). In Fig. 12, the top plot
shows the error in right-ascension angle in degrees over 15 days. The
lower plot shows the error in specific energy in m?/s? over the same
time period. The desired average right ascension for this simulation is
0deg, with the desired average energy corresponding to a 400-km-alt
circular orbit. Using the solution of Eq. (57) and the parameters of
this simulation, g/m varies from about 2.5 to 3.3 C/kg.

For comparison, Fig. 13 shows the results of a simulation under the
same initial conditions using a constant charge-to-mass ratio
(¢/m = 2.93). The same two plots are shown. The comparison of
these two figures shows that the charge-varying scheme greatly
reduces the errors in right ascension and energy. For a constant
charge-to-mass ratio, the maximum right-ascension error is
51.68 deg. Under the open-loop-varying scheme, the maximum
error is only 4.76 deg. However, the error in the varying charge does
not asymptotically approach zero or fall into a periodic motion, and
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Fig. 12 Right ascension and energy error over 15 days for a spacecraft
using the variable charge-to-mass scheme defined in Egs. (53) and (57).
The desired average right ascension is 0 deg. The orbit is initially a 400-
kme-alt circle. The geomagnetic field is tilted to 10 deg.
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Fig. 13 Right ascension and energy error over 15 days for a spacecraft
under a constant charge. The desired average right ascension is 0 deg.
The orbit is initially a 400-km-alt circle. The geomagnetic field is tilted to
10 deg.

so its stability is not guaranteed. To enforce a guarantee, feedback
control is introduced.

C. Feedback Control for g/m

Although the open-loop solution generally reproduces GT-1
behavior over short time scales, the resulting system is open-loop and
is prone to instabilities due to imperfect modeling. To remedy this

_ —k4C(M — M cos2u + L sin2u) + (k4 — 0.05)||C(M — M cos 2u + L sin 2u) |

Q-Q,
E—E,

ksC(M—Mcos2u+ Lsin2u) ksC(M—Mcos2u+ Lsin2u)
- k4A(L+ Lcos2u+ Msin2u) ksA(L+ Lcos2u+ Msin2u)

Q-Q,
2]

Equation (61) represents a closed-loop, linear, time-varying (LTV)
system. Describing the stability of an LTV system is not as simple or
straightforward as the time-invariant case. The eigenvalues of the
state matrix being in the left-half plane is neither a sufficient nor
necessary condition of stability. However, if the state matrix changes
sufficiently slowly in time, the state matrix being Hurwitz can show
stability. Rosenbrock [20] puts explicit bounds on the rate of change
of the state matrix. We do not develop specific bounds in the method
of Rosenbrock, but use the eigenvalues of the state matrix as a guide
to selecting a controller, which will later be shown numerically to be
stable based on the state transition matrix.

Solving for the eigenvalues yields the following condition on the
gains k, and ks:

C(M — M cos2u + L sin 2u)
A(L + L cos2u + M sin2u)

ks < —k, (62)

Gains that meet the criterion in Eq. (62) give the system a negative
real eigenvalue. The second eigenvalue of system is always zero.
Using Eq. (62) as a guideline, a stabilizing controller is found to be

k4 — _05 k5

situation, feedback is introduced to the expression defining g/m:

%=h+bmﬂwwﬂmh+h@—9w+h@—%)
(58)

where k|, k,, and k5 are as given in Eq. (57), and Q) and E, are
defined by integrating Eqs. (45) and (46), respectively. Thus, k, and
ks are feedback gains and the 2 and E terms are errors to be zeroed.
The definition of ¢/m in Eq. (58) is substituted into Eqs. (47) and
(48). The terms involving k|, k,, and k; are assumed to satisfy the 10-
equation system defined by Eqgs. (54) and (55). This assumption is
not explicitly true, because k;, k,, and k5 are only chosen to satisty
Eq. (56), but the resulting error can be treated as a small unmodeled
disturbance. Applying this assumption gives

Q=Q,+ (CM — CM cos 2u + CL sin 2u)[k,(2 — Q)
+ ks(E — Ep)] (59)

E=Ep + (AL + AL cos 2u 4+ AM sin 2u)[ks (2 — Qp)
+ ks(E — Ep)] (60)

Combining these equations (59) and (60) into a state-space system
yields

(63)

A(L 4+ Lcos2u + M sin2u)

where the symbol ||(-)|| refers to absolute value. The gain ks is not
constant. This set of gains results in stable errors in energy and right
ascension over at least 180 deg of desired average right-ascension
angle in simulation, implying that any Earth-fixed longitude can be
tracked in GT-1 fashion with bounded finite error.

The results of the controller in Eq. (63) are explored numerically.
Figure 14 shows right ascension and energy error under the same
conditions as the simulations shown in Figs. 12 and 13. The
feedback-control scheme uses about the same range of ¢/m values as
the open-loop scheme. The maximum right-ascension error of the
feedback case is 4.12 deg, less than the open-loop error of 4.76 deg.
Additionally, the error in the feedback case falls into a periodic
motion and is stable for all time.

The plots shown in Fig. 15 are intended to demonstrate the
improvement in stability of the feedback-control scheme over the
open-loop variable g/m case. Figure 15a shows the results of an
open-loop simulation similar to those done previously, but with a
desired average ascension angle of 70 deg. This orbit deviates widely
from the desired path. The system in this case is unstable. Figure 15b
shows the same simulation using the feedback controller. The
controller is able to stabilize the system, and results in bounded error.
Despite the large error bounds, the underlying system is stable.

Figure 16 further elucidates the stable periodic nature of
the feedback solution. This figure shows the right ascension
and energy error under feedback control for a circular 400-km orbit
with desired average right ascension of 45 deg. This simulation
is carried out for 75 days, and the periodic nature of the error is
evident.
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Fig. 14 Right ascension and energy error over 15 days for a spacecraft
using the feedback-control scheme defined in Eq. (58). The desired
average right ascension is 0 deg. The orbit is initially a 400-km-alt circle.
The geomagnetic field is tilted to 10 deg.
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Fig. 15 Right ascension and energy error over 15 days for a spacecraft
using the open-loop scheme and the feedback controller. The desired
average right ascension is 70 deg. The orbit is initially a 400-km-alt circle.
The geomagnetic field is tilted to 10 deg.
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Fig. 16 Right ascension and energy error over 75 days for a spacecraft
using the feedback-control scheme defined in Eq. (58). The desired
average right ascension is 45 deg. The orbit is initially a 400-km-alt circle.
The geomagnetic field is tilted to 10 deg.

To show numerically that the controller in Eq. (63) does indeed
stabilize the system in Eq. (61), we use the result that an LTV system
is stable if and only if the norm of its state transition matrix is
bounded for all time [21]. We numerically solve for the state
transition matrix ®(z, 0) for the system simulated in Fig. 16. Given
the time history of this simulation, the system matrix of Eq. (61) can
be found as a function of time. Two linearly independent initial
conditions, x,, and x,, are then integrated using the system matrix.
With the two resulting time histories, x;(¢) and x,(¢), the state
transition matrix is given by

@(£,0) = [x1(1) x2(D)]lxo, XOZ]_1 (64)

Figure 17 shows the matrix-induced 2-norm of the state transition
matrix. Because the norm is bounded, the system is stable. However,
the result in Fig. 17 does not give uniform stability of the system, nor
does it prove that the system is stable over a range of desired right-
ascension values. The norm of ®(z,0) approaching zero as time
increases leads to the conclusion that Eq. (61) is asymptotically
stable, but the error plots in Fig. 16 plainly show errors approaching
some nonzero value. In Fig. 16, the linear system in Eq. (61) is not
being simulated, but the full nonlinear system of Eqgs. (6-8).

x10° Norm of the State Transition Matrix

35 B

25 B

Norm Value

1.5 B

U 1 1 1 1 -
0 10 20 30 40 50 60 70 80

Time (days)

Fig. 17 Matrix norm of the state transition matrix of the system in
Eq. (61), using data from the simulation shown in Fig. 16.
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Resampled, Zero-Mean Right Ascension Error {deg)
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Fig. 18 Resampled right-ascension error over 75 days for the
simulation displayed in Fig. 16. The actual right-ascension error is
Fourier-transformed. The power spectral density of this transform is
used to find the two main frequencies present, and the error is
numerically resampled at the difference between these frequencies. The
long-term average error is also subtracted to create a zero-mean system.

Assumptions made in deriving Eq. (61) cause it to be not entirely
accurate.

However, we show numerically that the full nonlinear solution
still approaches a stable and periodic nonzero error. Figure 18 is used
to more rigorously show the periodicity of the right-ascension error
in Fig. 16. Atfirst glance, the long-term behavior of the error appears
to be a periodic beat of two similar frequencies. To test this
hypothesis, the error data are transformed to the frequency domain.
The power spectral density of this transform shows two distinct
peaks. One peak occurs at a frequency near twice per orbit; the other
occurs at slightly less than twice per orbit. The data are numerically
resampled at the beat frequency of the two frequency peaks. The
long-term average right-ascension error is subtracted from the
resampled data, and the resulting curve is plotted in Fig. 18. As the
transient response damps out, this curve goes to zero, indicating good
agreement with the periodic beating assumption.

The feedback controller presented in Eq. (58) with the gains in
Eq. (63) stabilizes GT-1 behavior under the influence of a tilted
geomagnetic field. This controller consists of proportional feedback
based on a linearized model and does not guarantee asymptotic
convergence. However, the controller does bound the error in right
ascension and energy. Numerical analysis shows that the system is
stabilized for a full range of desired average right ascensions and
initial orbit altitudes.

VI. Conclusions

Lorentz-augmented orbits (LAOs) are based on simple physical
principles but can be used to accomplish a variety of complex orbital
behaviors. Analytical results, verified by numerical simulations,
show the effects of the Lorentz force on the orbit of an LAO satellite.
The resulting changes in orbital elements can be used to develop
novel applications. These new applications include polar single-orbit
repeat-groundtrack (GT-1) satellites. A successfully implemented
GT-1 LAO orbit would greatly outperform today’s imaging
satellites. These orbits can exist at any altitude, not just the traditional
geosynchronous height. We have derived from first principles a
simple expression for the charge required to achieve such an
orbit. This expression is verified numerically and allows for
mission designs to be evaluated. Also numerically confirmed is the
existence of equatorial orbits with arbitrary control over the location
of perigee. Again, a simple expression for the charge required is
shown from first principles. These orbits can create an Earth-
synchronous orbit for which the perigee and apogee lie at a constant
longitude.

The presence of a tilt in the Earth’s magnetic field greatly
complicates GT-1 behavior. The GT-1 orbit in this case is not stable
for constant charge. However, modulating the charge as a means of
feedback control is shown to stabilize a GT-1 LAO. The addition of
controlled nonconstant charge opens many new avenues in LAO
research, including orbit raising, inclination change, flyby
augmentation, rendezvous, and formation control.
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